Sing Yin Secondary School Physics Teaching Syllabus (2016-2017)

& 6E)
Radioactivity and Nuclear Energy
S S Tong, H K Won, P K Kwong, Y L Wong, L C Lee
Astronomy and Space Science
S S Tong
Atomic World
L C Lee
Pearson

Aims

This course of study should help students:

- ① learn the fundamental knowledge and method of Physics in a coherent, systematic and quantitative way,
- ② synthesize their knowledge, and think critically so that they can succeed in their future work or academic study,
- ③ develop skills relevant to the applications of Physics, such as experimental design, experimental technique and so on,
- ④ deepen their sense of carefulness and safety,
- © cultivate a respect for fact,
- © acquire a love of logical deduction,
- ② appreciate the beauty and power of Physics,
- It is aware of the problems facing Hong Kong and mankind and how Physics can help to solve them, and
- be able to apply what they learn to solve problems rationally in their academic and daily life.

Topics		<u>Time allotted (cycle)</u>
1.	Laboratory safety regulations and general introduction	0.1
2.	Radiation and Radioactivity - X-rays and radioactivity - Nuclear radiation - Radiation safety - [Effect of radon gas in closed area]	1.9
3.	Atomic Model and Radioactive Decay - Atomic model - Radioactive decay - [Derivation of exponential law of decay]	0.5
4.	Nuclear Energy - Nuclear energy - Mass-energy relation	0.5

REF: F6 TEACHING SYLLABUS 16-17 Topics		P.2 of 3 Time allotted (cycle)
5.	A Cosmic Journey - A virtual journey of the cosmos	0.5
6.	Astronomy through History - Astronomy of the ancient Greeks - Copernican revolution - Kepler's laws of planetary motion	0.5
7.	Newton's Law of Gravitation - Orbital motion under gravity - Apparent weightlessness - Energy in orbital motion	1
8.	 Star and the Universe Stellar distance and magnitude Stellar spectrum Stellar luminosity and Hertzsprung-Russell diagram Radiation intensity and inverse square law Doppler effect Applications of the Doppler effect Dark matter and the expansion of the universe 	1.5
9.	 Rutherford's Atomic Model The discovery of atomic structure Rutherford's atomic model Limitations of Rutherford's atomic model The importance of scattering experiments in particle physics 	0.5
10.	The Photoelectric Effect - The photoelectric effect - Properties of the photoelectric effect - The quantum theory of light	1.5
11.	Bohr's Atomic Model - Line spectrum - The Bohr's model of the hydrogen atom - Spectral lines of the hydrogen atom	1.5
12.	Wave-Particle Duality - Wave-particle duality of light - Matter waves - Implications of the wave-particle duality	0.5

14. Probing into the Nanoscale

- Physical properties of materials in the nanoscale
- Observing at the nanoscale
- Recent development in nanotechnology

11

0.5

[Topics added for challenge class]: These topics are out of syllabus but useful for the students who want to challenge themselves.

- END -

Signature of Teacher-in-charge:

Checked by: